Distributed Interior-point Method for Loosely Coupled Problems
نویسندگان
چکیده
منابع مشابه
Distributed Interior - point Method for Loosely Coupled Problems ⋆
In this paper, we put forth distributed algorithms for solving loosely coupled unconstrained and constrained optimization problems. Such problems are usually solved using algorithms that are based on a combination of decomposition and first order methods. These algorithms are commonly very slow and require many iterations to converge. In order to alleviate this issue, we propose algorithms that...
متن کاملA Distributed Primal-Dual Interior-Point Method for Loosely Coupled Problems Using ADMM
In this paper we propose an efficient distributed algorithm for solving loosely coupled convex optimization problems. The algorithm is based on a primal-dual interior-point method in which we use the alternating direction method of multipliers (ADMM) to compute the primal-dual directions at each iteration of the method. This enables us to join the exceptional convergence properties of primal-du...
متن کاملAn interior point method for constrained saddle point problems
We present an algorithm for the constrained saddle point problem with a convexconcave function L and convex sets with nonempty interior. The method consists of moving away from the current iterate by choosing certain perturbed vectors. The values of gradients of L at these vectors provide an appropriate direction. Bregman functions allow us to define a curve which starts at the current iterate ...
متن کاملImproved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملMatrix-free interior point method for compressed sensing problems
We consider a class of optimization problems for sparse signal reconstruction which arise in the field of Compressed Sensing (CS). A plethora of approaches and solvers exist for such problems, for example GPSR, FPC AS, SPGL1, NestA, `1 `s, PDCO to mention a few. CS applications lead to very well conditioned optimization problems and therefore can be solved easily by simple first-order methods. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2014
ISSN: 1474-6670
DOI: 10.3182/20140824-6-za-1003.01647